Результаты поиска потегубиология

Дополнительные фильтры
Теги:
биологияновый тег
Автор поста
Рейтинг поста:
-∞050100200300400+
Найдено: 298
Сортировка:

Микропластик впервые обнаружили в кишечнике антарктических беспозвоночных

http://short.nplus1.ru/84MpNnS3dME

Хрусталик и стекловидное тело глаза одной глубоководной рыбы.

Вот так эволюция постаралась, чтобы это животное смогло концентрировать то небольшое количество света, которое у нее есть на глубине.

Отличный комментарий!

Верни на место, ей итак там сложно.

Культура кардиомиоцитов 5-дневных мышей

Cell Pisture Show - регулярный конкурс научной фотографии, который проводится издательством Cell Press, публикующим научные журналы. По итогам конкурса лучшие фотографии с описаниями рассылаются подписчикам CP на почту.
Этот выпуск посвящён синтетической биологии.

Биология Plug N' Play
Anne-CécileReymann, Manuel Théry, iRTSV в Гренобле, Франция

,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Когда Ваш жёсткий диск ломается, Вы заказываете новый онлайн и меняете их местами. Почему мы не можем сделать то же самое с биологическими системами? От ДНК-роботов и органов-на-чипе к нанощетинкам, захватывающим и высвобождающим лекарства, это слайд-шоу рассматривает две больших цели синтетической биологии: создавать новые биологические системы и перепроектировать существующие из не-биологических компонентов
Изображение: Филаменты актина нуклеированы в форме кругов диаметром 20-40 микрон с использованием микропаттернинга (см. далее) и сфотографированы путём эпифлуоресцентной микроскопии.


Выпуская актин
Anne-CécileReymann, Manuel Théry, iRTSV в Гренобле, Франция

,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Что регулирует архитектуру актина в клетке? Недавно (относительно - прим.пер.), Théry и коллеги продемонстрировали, что для организации F-актиновыхфиламентов (жёлтые) в параллельные пучки, какие встречаются в клетках, - без поперечных связей и клубков - нужна только правильная ориентация актиновых ядер.
Изображение:
Ядра актина размещены на покровном стекле в форме круга путём микропаттенрнинга с применением глубокой UV-литографии. Полимеризация актина вызвана последующим добавлением мономеров актина, профилина и комплекса Arp2/3. Плотная разветвлённая сеть филаментов образовалась на круге (ярко жёлтый), в то время как не-разветвлённые филаменты выросли снаружи от круга в виде параллельных пучков. 7% мономеров актина было помечено красителем Alexa568, который позволил сфотографировать их с применением классической эпифлуоресцентной микроскопии(прямой микроскоп Olympus BX61, сухой объектив x40).


Перепрограммируя форму
Timothée Vignaud, Qingzong Tseng, Manuel Théry, iRTSV вГренобле, Франция

,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Микропаттернингтакже контролирует размер и форму клетки. Здесь, Théry и коллеги нанеслиадгезивные молекулы (фибронектин) на стёкла в разных формах - Т-образной(сверху справа) и H-образной (снизу справа). Когда они пересадили одну или двеклетки на полученный микропаттерн, те приняли соответствующую форму: клетка наT-форме стала треугольной, пара клеток на H-форме образовала квадрат. Если они"рисовали" паттерн рядом с клеткой, уже закрепившейся на подложке(слева), клетка постепенно распространялась на него и создавала стресс-волокна актина по краям.
Изображение:
Слева:клетка RPE1 экспрессирует LifeAct-GFP, который отмечает актиновый скелет в живых клетках. После того, как рядом с клеткой был нарисован микропаттерн,каждые 20 минут получали изображение на инвертированном микроскопе Nikon TE2000(объектив x100 с маслом).
Справа:единичная клетка RPE1 на Т-паттерне и пара клеток MCF10A на H-паттерне были пермеабилизованы параформальдегидом после посадки на микропаттернированное стекло. Актиновая сеть и фокальные контакты окрашены зелёным (фалоидин-FITC) и красным (антитела к винкулину/паксиллину), соответственно. Межклеточные контакты окрашены белым (антитела к бета-катенину). Изображения получены на микроскопе Leica DMRA (объектив x100 с маслом).


ДНК-роботы
Campbell Strong, Shawn Douglas, Gael McGill, Wyss Institute forBiologically Inspired Engineering at Harvard University, Бостон, США

,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Одна из главных целей синтетической биологии - использовать строительные блоки живых систем (ДНК, РНК, протеины, липиды) для создания инструментов и устройств,которые не существуют в природе. Для примера, в "ДНК-оригами",длинные одноцепочечные молекулы ДНК с длиной свыше 1000 пар оснований складывались в кастомизированные формы за счёт взаимодействия с малыми"молекулами-образцами".
Изображение:
Дуглас и коллеги использовали подход "ДНК-оригами" для постройки бочонкообразного наноробота (35x35x45 нанометров), который может быть наполнен лекарствами, фрагментами антител (розовые) и другими наночастицами. Аптамер ДНК(зелёный) держит бочонок закрытым, но, когда робот контактирует с антителами к аптамеру, раскрывает его (например, на поверхности клетки). Робот был разработан при помощи программ Molecular Nay и CadNano.


К минимальным клеткам
Jorge Bernardino de la Serna, University of Southern Denmark, Оденсе, Дания

,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Одним из самых амбициозных устремлений синтетической биологии является создание"минимальных клеток", которые полностью повторяют функции естественных клеток - потребление энергии, градиент ионов, хранение информации,изменчивость. Хотя такие технологии всё ещё далеко на горизонте, исследователи достигли большого прогресса в создании "полусинтетических клеток",которые имитируют определённые функции клеток, такие как синтез белков или липидных мембран. Многие из этих искусственных клеток обитают в липосомах или искусственных везикулах с билипидной мембраной.
Изображение:
Каждая микрофотография показывает гигантскую липосому диаметром 20-50 микрон,состоящую из жиров и протеинов поверхности альвеол лёгких млекопитающих без химической обработки. Липосомы были напрямую выделены из смывов с лёгкого.Каждая микрофотография получена при разных температурах или составах жиров и белков легочного сурфактанта. Изображения получены на лазерном сканирующем инвертированном микроскопе Zeiss LSM 510 (объектив x40 с водной иммерсией), при конвенциональном или двухфотонном возбуждении флуоресценции.


Поймай-И-Отпусти
Joanna Aizenberg, Harvard School of Engineering and Applied Sciences, Бостон, США

Ли	щ / Я/г ^
" т à i ^ ж	%/Ш,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Другая крупная цель синтетической биологии - создание из неестественных молекул и соединений инструментов и устройств, имитирующих свойства природных. Например,Joanna Aizenberg и её лаборатория стали пионерами использования само-организующихся синтетических нановолокон для создания устройств,захватывающих и отпускающих лекарства, которые выглядят поразительно похожими на маленькие щупальца (вы же не думали, что пост обойдётся без тентаклей? -прим. пер.).
Изображение:
Сканирующая электронная фотография наноразмерных щетинок, удерживающих сферу. Щетинки сделаны из эпоксидной смолы и погружены в жидкость. Пока щетинки засыхают, они захватывают то, что поблизости, например лекарства или наночастицы. Щетинки сохраняют энергию и их можно заставить высвободить захваченные частицы. Каждая щетинка примерно в тысячу раз тоньше человеческого волоса.


Нанодреды
Joanna Aizenberg, Harvard School of Engineering and Applied Sciences, Бостон, США

,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Самоорганизующиеся нановолокна могут также быть использованы при создании наноструктур с уникальными спиральными формами и иерархической структурой, каковые часто могут наблюдаться в живых системах. Упорядоченная матрица нановолокон погружается в жидкость и, по мере испарения жидкости, формирует спиральные пучки и пучки пучков с заданными свойствами, зависящими от состава и расположения нановолокон в матрице.
Изображение:
Сканирующая электронная фотография наноразмерных щетинок, сформировавших иерархическую спираль по мере высыхания жидкости.
Больше здесь


Лёгкое на чипе
Donald Ingber, Wyss Institute for Biologically Inspired Engineering atHarvard University, Бостон, США

,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Один из проявляющихся трендов синтетической биологии - симуляция функций и активности живых органов на микроустройствах, произведённых, как микрочипы и выстеленных живыми клетками человека. Donald Ingber и коллеги использовали эту стратегию для создания "лёгкого на чипе", которое содержит пустые каналы,разделённые гибкой пористой мембраной, выстеленной с одной стороны клетками эпителия альвеол, а с другой - клетками легочных капилляров. Подвергая межтканевой интерфейс циклической деформации, эти устройства имитируют дыхательные движения. Этот простой орган на чипе повторяет ответ лёгкого человека на инфекции, воспаление и токсины. Подобные устройства предлагают новый подход к изучению лекарств и оценке токсичности соединений.


Синтезируя органы
Hidetaka Suga, Yoshiki Sasai, RIKEN Center for Developmental Biology, Кобе, Япония

,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Хотя обычно эти технологии не относят к одной группе, технологии использования стволовых клеток имеют большую общую цель с синтетической биологией: создание искусственных органов. Ранее Sasai и его команда создали сетчатку в 3D-культуре эмбриональных стволовых клеток (ESC) и, на момент выхода выпуска, им удалось"вырастить" вне организма часть гипофиза. В чём заключался секрет создания этой железы? В организации двух слоёв эпителиальных клеток (эктодермы и нейродермы), чтобы на их интерфейсе мог сформироваться зачаток гипофиза -карман Ратке.
Изображение:
Слева:натуральный орган, сагиттарльный срез развивающегося кармана Ратке (красный)эмбриона мыши на 12 день. Карман Ратке помечен красным при помощи антител кPitx1, в то время, как гипоталамус помечен зелёным за счёт антител к Rx.
Справа:искусственный орган, карманы Ратке (зелёные и белые) самообразовались в скоплениях эмбриональных клеток на 13 сутки. Зелёные, белые и красные цвета ассоциированы с антителами к Lim3, Pitx1 и Tuj1, соответственно. Для окраски ядер в синий цвет на обоих изображениях использовался Dapi.


БОНУС: пчёлы-роботы
Alex Kushleyev, Daniel Mellinger, Vijay Kumar, University of Pennsylvaniaand KMel Robotics, Филадельфия, США


И, наконец,почему бы не обсудить "синтез" сложного биологического поведения?Один из наиболее часто повторяемых типов поведения - коллективный полёт пчёл и других насекомых, известный, как роение. Vijay Kumar и его группа сделали впечатляющий шаг к повторению роения у летающих дронов. Они использовали полностью автономные (без дистанционного управления!) квадрокоптеры, которые способны совместно маневрировать вокруг препятствий, лететь в определённой формации и объединяться в небольшие структуры.

You'll always find exciting science n Cell !

Переводить ещё Cell Picture Show?
Нормально, переводи ещё
64(62,75%)
Ты мудак, не переводи больше
1(0,98%)
Нормально, не переводи больше
2(1,96%)
Ты мудак, переводи ещё
26(25,49%)
Узнать ответы
9(8,82%)

Биолог Александр Марков: Культурные традиции у синиц.

Долгое время считалось, что культура это вещь чисто человеческая. Доктор биологических наук Александр Марков приводит пример эксперимента, доказывающего наличие культуры даже у синиц.

Ученые омолодили человеческие клетки.


Ученые из Стэнфордского университета продемонстрировали, что могут омолодить человеческие клетки, отмотав назад эпигенетические часы.

Одним из ключевых факторов старения являются эпигенетические изменение, т. е. изменения в экспрессии генов в клетке, происходящие с возрастом. Это нарушает базовые функции наших клеток и увеличивает риск рака и других возрастных заболеваний.
В течение жизни наши клетки подвергаются воздействию внешних факторов, что приводит к вредным изменениям в их геноме через эпигенетические механизмы. Эти изменения накапливаются с течением времени и приводят к ухудшению работы клеток.

Эпигенетические возрастные изменения включают в себя нарушения метилирования, что приводит к снижению количества гетерохроматина, увеличение хрупкости хромосом, нарушениям транскрибирования и т. д.

В сущности, эти эпигенетические изменения делают наши клетки функционально старыми или вообще нефункциональными, и если эти изменения могут быть отменены, то такая терапия могла бы обратить вспять клеточное старения и предотвратить или обратить многие возрастные заболевания.

Ранее исследователи уже показали, что можно сбросить возраст клеток. Клетки могут быть переведены в более молодое состояние введением четырех веществ (Oct4, Sox2, Klf4, and c-Myc), называемых факторами Яманаки, названными в честь доктора Яманаки, открывшего их в 2006 году.

В 2016 году ученые из института Солка использовали факторы Яманаки, чтобы обратить эпигенетические изменения у мышей, однако их эксперимент имел трудности и оставил вопросы.

В нем использовались мыши с ускоренным старением, и хотя они испытывали старениеподобные симптомы и их жизнь была значительно короче, это не точная симуляция естественного старения во всей его сложности. Поэтому полностью полагаться только на таких мышей в определении эффективности антивозрастной терапии нельзя.

Поэтому в новом исследовании ученые использовали частичное репрограммирование клеток, взятых уже у  пожилых людей, чтобы вернуть их в более молодое состояние. Исследователи создали платформу, которая позволит им тестировать репрограммирование и омоложение как мышиных, так и человеческих клеток, на многих типах клеток, и позволит понять, как эпигенетическое омоложение влияет на остальные факторы старения.

Слишком длительное использование факторов Яманаки не только сбрасывает возраст клеток, но и возвращает их на более раннюю стадию развития, аналогичную эмбрионным стволовым клеткам - в состояние, из которого она может стать клеткой любой ткани тела. Это полезно, если вы хотите создать партию специальных клеток для трансплантации, и очень плохо если это будут например клетки сердца и они забудут, как правильно работать.

Но ученые нашли способ и отмотать возраст клеток, и не дать им потерять свою идентичность. Они добавили к уже известным факторам Яманаки еще два и вводили в клетки пониженные дозы в течение короткого времени, что позволило клеткам сохранить свою идентичность и одновременно омолодило их.

Исследователи взяли клетки хрящевой ткани у пожилых пациентов с остеоартритом и выяснили, что после введения низких доз факторов Яманаки, клетки перестали секрецировать вещества, приводящие к воспалению и прогрессированию заболевания. Они также выяснили, что мышечные стволовые клетки человека, которые не могли нормально работать из-за саркопении (возрастное заболевание, связанное с потерей мышечной массы), вернулись в молодое состояние.

Теперь ученые усиленно разрабатывают терапии для остеоартрита и других возрастных заболеваний, основанные на их подходе частичного репрограммирования. Они также основали свою компанию: https://www.turn.bio


Соусы:

Зуб под микроскопом

Отличный комментарий!

А где кариозные монстры?
,зуб,Микроскоп,биология,gif,Охуенный Зум
Я все ждал, что на самом большом приближении будет видно, как там армяне в нарды играют

Синхронизация двух отделов мозга помогла макакам отдать еду сородичам


Здесь мы собираем самые интересные картинки, арты, комиксы, мемасики по теме (+298 постов - )