Результаты поиска потегунаука

Дополнительные фильтры
Теги:
наукановый тег
Автор поста
Рейтинг поста:
-∞050100200300400+
Найдено: 1000+
Сортировка:

про сверхсветовые премещения

https://vk.com/club106216977
Сверхсветовыеперемещение на самом деле запрещеноСТО, причем обойти этот запрет не так-топросто. Тут дело в нарушении принципапричинности. Дело в том,что если объект относительно однойсистемы отсчета будет двигаться быстреескорости света, то относительно другойбудет двигаться назад во времени. 
Т.е.варп-двигатель или гипервпривод можнонастроить таким образом, что можно будетвернуться в свое прошлое. Причем еслис гиперпривовдом, который движетсячерез другое измерение, временныхпарадоксовможно легко можно избежать,то варп-двигатель их должен генерироватьсплошным потоком. 
Простоепояснение если «Сокол тысячилетия»движется со скоростью примерно 10 млнраз быстрее света относительно планетыот которой стартовал. То относительнопланеты находящейся на другом концегалактике, он будет двигаться примернов 1000 тысячу раз быстрее скорости света,но назад во времени, и прибудет за векадо того как взлетел с исходнойпланеты.Короче простотак на варпе и гипердвижке летать неполучиться. Тут потребуется жесткоегалактическое ГИБДД которые будетреально жестить. Ибо иначепарадоксов не избежать массовых. Ибопарадоксы если не разрушит вселенную,то создадут множество серьезных проблем.Применительно моейвселенной. Гиперврата.
Суть в томчто этот устройство перемещает объектиз одной точки пространства-времени вдругую.
Проблемы с парадоксамирешаются именно факторами
- Устройствоперемещает в заданную точку пространстваи времени с разбросом.
- Расстояниямежду колониями значительные болеетысячи световых лет.
- Всеобщиестандарты и координационное время.

Небольшая картинка пояснение
Вам понятно?!
нет
31(27,68%)
да
9(8,04%)
пошел на..
66(58,93%)
свой вариант
6(5,36%)

Быстрые радиовсплески оказались похожи на землетрясения — только на нейтронных звездах

В стремлении понять природу этих загадочных космических сигналов японские ученые сравнили данные тысяч быстрых радиовсплесков с афтершоками землетрясений и солнечными вспышками. И нашли сходства.
Иллюстрация образования быстрого радиовсплеска от магнетара
Быстрые радиовсплески (Fast Radio Bursts, FRB) — необычайно короткие и яркие радиоволны, разлетающиеся по космосу на миллиарды световых лет. Сам сигнал при этом длится долю секунды, а появление вспышки непредсказуемо. Впервые их заметили в 2007 году, и с тех пор они остаются одной из загадок современной астрономии.
Отчасти проблема их исследования в том, что не удается поймать точный источник этих радиоволн. Среди предположений — черные дыры, инопланетные цивилизации, гибнущие планеты и нейтронные звезды. В последних ученые почти уверены: наблюдения показывают, что по крайней мере некоторые из быстрых радиовсплесков прилетают от слияний нейтронных звезд и так называемых магнетаров — нейтронных звезд с мощнейшим магнитным полем.
«Выдвигались гипотезы, что на поверхностях магнетаров могут происходить звездотрясения — выделения энергии, схожие с земными землетрясениями. Последние достижения в сфере наблюдательной астрономии привели к обнаружению тысяч новых быстрых радиовсплесков. Мы воспользовались возможностью и сравнили огромные наборы статистических данных по быстрым радиовсплескам с данными землетрясений и солнечных вспышек. Искали возможные сходства», — рассказал профессор Томонори Тотани (Tomonori Totani) из департамента астрономии Токийского университета (Япония).
Предыдущие статистические исследования быстрых радиовсплесков фокусировались на промежутках времени между последовательными сигналами. Тотани и его соавтор Юйа Цудзуки (Yuya Tsuzuki) предположили, что такой анализ не дает полной картины о возможных корреляциях в параметрах сигналов, и решили сопоставить время между сигналами с количеством выплеснутой энергии.
Они исследовали почти 7000 быстрых радиовсплесков от трех самых активных источников — FRB 20121102A, 20201124A и 20220912A. Искали сходства в параметрах, универсальные для всех трех источников. Затем ученые тем же методом сопоставили время и энергию землетрясений, используя данные по Японии, и солнечных вспышек по данным спутника Hinode, изучающего Солнце. Результаты работы опубликованы в Monthly Notices of the Royal Astronomical Society.
Сопоставления времени и энергии у быстрых радиовсплесков (слева) и землетрясений (справа)
Анализ показал мало сходств между быстрыми радиовсплесками и солнечными вспышками, зато множество сходств между всплесками и землетрясениями.
«Во-первых, вероятность возникновения афтершоков от того же события составляет 10-50% (в комментарии для СМИ ученый указывает эти числа, а в статье — 10-60%. — Прим. ред.). Во-вторых, со временем частота афтершоков снижается, как функция степени от времени. В-третьих, частота афтершоков не меняется, даже если меняется активность „FRB-землетрясений“. В-четвертых, нет корреляции между энергией основного всплеска и его афтершока», — объяснил Тотани.
,космос,астрономия,наука,магнетар,нейтронная звезда,Реактор познавательный,длиннопост
Корреляционный анализ данных FRB 20121102A L21
,космос,астрономия,наука,магнетар,нейтронная звезда,Реактор познавательный,длиннопост
Корреляционный анализ данных землетрясения Нарита
,космос,астрономия,наука,магнетар,нейтронная звезда,Реактор познавательный,длиннопост
Корреляционный анализ данных солнечной вспышки
Это дает надежные основания полагать, что у нейтронных звезд есть твердая оболочка, подверженная «звездотрясениям», во время которых выделяется огромное количество энергии. А наши телескопы видят эти события в виде быстрых радиовсплесков. Получается, эти загадочные сигналы — наша возможность изучить физические характеристики коры нейтронных звезд.
Статья спизжена отсюда

Самки лягушек притворились мертвыми, чтобы не спариваться

Самкам травяных лягушек спаривание может стоить жизни. Особенно когда «даму» добиваются сразу несколько настойчивых «кавалеров». Чтобы получить желаемое, ухажеры запугивают самку, преследуют ее и даже принуждают к соитию. Долгое время считалось, что самки лягушек пассивны и беззащитны перед «брачной агрессией» самцов. Однако авторы нового исследования заявили, что это не так. У самок выработан целый арсенал хитростей, позволяющих избежать нежелательного внимания и при этом сохранить себе жизнь.
Самец и самка травяной лягушки
Весна — непростое время для самок травяной лягушки (Rana temporaria). После зимней спячки примерно на две недели эти амфибии собираются в неглубоких прудах, чтобы спариться и отложить яйца. Такие сборища могут быстро обернуться неприятностями: самцы лягушек, которых значительно больше, чем самок, начинают преследовать своих «дам», чтобы принудить к спариванию. Часто самцы наваливаются на самку кучей, образуя «брачный клубок», из-за чего она может просто утонуть.
Группа биологов под руководством Каролин Дитрих, биолога-эволюциониста из Института этологии имени Конрада Лоренца (Австрия) и специалиста по поведению травяных лягушек, собиралась выяснить, выбирают ли самцы этого вида себе пару в зависимости от размера тела. Однако во время исследования ученые случайно обнаружили у самок лягушек особенности, о которых ранее ничего не знали. Оказалось, амфибии используют несколько хитростей, чтобы ускользнуть от самцов и таким образом спасти себе жизнь. Работа опубликована в журнале Royal Society Open Science.
Самцы травяной лягушки навалились на самку кучей
Каролин Дитрих поместила в наполовину наполненный водой аквариум 96 самок разных размеров (большие и маленькие) и 48 самцов, а после оставила амфибий наедине, предварительно включив видеозапись.
Наблюдения показали, что самцов привлекают самки любого размера. То есть, когда дело доходит до спаривания, им неважно, крупная перед ними самка или маленькая. Но когда ученые стали просматривать видеозаписи, они обнаружили странное поведение «дам».
«Мы увидели, как самец тащит оцепеневшую самку и подумали, что она мертва. В итоге самец отпустил ее и поплыл к другой. Буквально через пару минут самка, которую мы считали мертвой, „ожила“ и уплыла», — пояснила Дитрих.
Просматривая другие видеозаписи, ученые поняли, что такое поведение не случайность: треть самок симулировала смерть, когда самцы пытались в них вцепиться.
Мнимая смерть, также известная как танатоз, — распространенное явление в животном мире, но обычно ее применяют для того, чтобы спастись от хищника. Притворяться мертвым, чтобы не спариваться, — такое в природе встречается намного реже. Например, это замечено у самок одного из видов тритонов. Еще самцы некоторых видов пауков иногда симулируют смерть, чтобы их не съели самки. Но у лягушек это наблюдали впервые.
Интересно, что танатоз у самок травяных лягушек — не единственная хитрость, позволяющая спастись от спаривания. Еще они умеют имитировать звуки самца и «стряхивать» с себя «ухажеров».
Во время брачного сезона самцы травяной лягушки хватаются за все, что находится перед ними. Это могут быть даже другие самцы. Когда самец пытается взобраться на другого, последний издает специфические звуки, сообщающие первому об «ошибке». Дитрих и ее группа наблюдали, как самки лягушек имитировали эти звуки в попытках обмануть нежелательных партнеров, заставляя «думать», что перед ними не самка, а самец. Такое поведение наблюдалось почти у половины самок в эксперименте.
Еще самки пытались выскользнуть из «объятий» самцов, поворачиваясь под ними в воде. Подобную тактику применяло большинство самок, то есть она была наиболее распространенной.
none
rotating tonic immobility rotating + rotating + rotating + calling tonic immobility calling +
tonic immobility
female avoidance behaviour,биология,наука,лягушка,спаривание,танатоз,Реактор познавательный,длиннопост
Фиксаций для каждой формы избегающего поведения у самок
,биология,наука,лягушка,спаривание,танатоз,Реактор познавательный,длиннопост
Размер тела самки в мм и отображаемое избегающее поведение. Самки, демонстрирующие все три поведения, были в среднем значительно меньше самок, демонстрирующих вращение и имитацию звуков. Большие белые точки - средний размер тела
Хотя исследование проходило в лаборатории, Дитрих считает, что самки лягушек проявляли бы аналогичное поведение в дикой природе. Однако некоторые специалисты с ней не согласны: они отметили, что условия, в которых проводили опыт, полностью не имитировали среду обитания этих амфибий, а значит, эксперимент мог нарушить естественное поведение животных.
Статья спизжена отсюда

Отличный комментарий!

Человек умнее лягушки,и он знает что мертвая самка все еще самка пару часов

В состав астероидов могут входить неизвестные типы «сверхплотной» материи

Плотность некоторых крупных астероидов может в разы превышать плотность любых известных на Земле элементов. Это должно указывать на то, что «космические камни», по крайней мере частично, могут состоять из неизвестных типов очень плотной материи, которые нельзя изучить с помощью «стандартной модели физики». Авторы нового исследования попытались объяснить чрезвычайно высокую плотность одного из таких крупных астероидов.
33 Polyhymnia
Earth Distance: 3.567 AU Sun Distance : 2.718 AU,Реактор познавательный,полигимния,астероид,наука,физика,космос,длиннопост
Орбита астероида (33) Полигимния и его положение в Солнечной системе
В середине XX века советский физик-ядерщик Геогий Флеров со своими подопечными смог синтезировать в лаборатории ряд сверхтяжелых элементов, включая унунквадий с атомным номером (Z) 114, впоследствии его переименовали в флеровий в честь физика.
Под атомным номером (порядковый номер химического элемента в периодической системе элементов таблицы Менделеева) понимают количество положительных элементарных зарядов в атомном ядре. На сегодня в периодической таблице числятся 118 элементов, в природе встречается 92 из них, остальные 26 получены искусственно. Чем выше атомный номер элемента, тем он «тяжелее».
Советские ученые предположили, что все элементы, полученные в лаборатории, должны были когда-то существовать на Земле, но с течением времени они распались. Действительно, их следы, пусть и ничтожные, находят на нашей планете. Например, следы нептуния (Z=93) обнаружены в урановых рудах — это продукты ядерных реакций под действием нейтронов космического излучения и спонтанного деления урана.
Флеров выдвинул гипотезу, что в природе должен существовать «остров стабильности сверхтяжелых ядер» — группа сверхтяжелых элементов, находящаяся за пределами уже открытой части таблицы Менделеева.
,Реактор познавательный,полигимния,астероид,наука,физика,космос,длиннопост
Остров стабильности на карте изотопов
Сегодня физики разделяют сверхтяжелые элементы на две группы:
— С атомным номером от 105 до 118, которые были получены искусственно, но при этом радиоактивны и нестабильны, с очень коротким периодом полураспада, и, следовательно, они представляют только академический и исследовательский интерес;
— Элементы «острова стабильности» с атомным номером больше 118. Они пока не наблюдались в природе, но для некоторых из них были предсказаны свойства. В частности, расчеты показывают, что могут существовать элементы до Z=164, при этом они могут оставаться стабильными на протяжении долгого времени.
Поскольку плотность элементов, как правило, возрастает с увеличением их атомной массы, можно ожидать, что элементы «острова стабильности» будут чрезвычайно плотными.
На Земле самый плотный стабильный элемент — металл осмий (Z=76) — 22,59 г/см3, его плотность почти в два раза больше, чем внутреннего ядра Земли. Однако в космосе встречаются объекты с плотностью элементов намного выше, чем у осмия, — так называемые компактные сверхплотные тела (compact ultradense objects, CUDO).
Один из ярких примеров таких объектов — астероид Главного пояса (33) Полигимния: согласно расчетам, его плотность составляет около 75 г/см3. Группа американских физиков из Аризонского университета попыталась объяснить эту особенность астероида. Ученые задались целью рассчитать атомную структуру и свойства сверхтяжелых элементов Полигимнии (около значения Z=164), используя модель атома Томаса — Ферми. Результаты работы опубликованы в The European Physical Journal Plus (здесь можно ознакомиться с ее полным текстом).
«Мы выбрали эту модель, несмотря на ее неточность, за то, что она позволяет систематически изучать атомную структуру потенциальных сверхтяжелых химических элементов, которых нет в известной периодической таблице. Кроме того, с ее помощью можно исследовать множество атомов за короткое время», — объяснил ведущий автор исследования Ян Рафельски.
Плотности элементов с атомным номером от 1 до 100. Красными треугольниками отмечены тяжелые металлы. Красный треугольник в правом верхнем углу — осмий (Z=76), самый плотный стабильный элемент на Земле
Расчеты физиков показали, что элементы, которые имеют атомные номера близкие к 164, могут быть стабильными и при этом их плотность может составлять от 36,0 до 68,4 г/см3 — значение очень близкое к значению плотности, полученному при изучении Полигимнии (75 г/см3).
Авторы сделали вывод, что на астероиде могут находиться сверхтяжелые элементы «острова стабильности». Если оценки плотности верны, то, скорее всего, Полигимния состоит из неизвестных на сегодня сверхтяжелых ядер элементов, которые пока невозможно изучить на Земле — по крайней мере, при современном уровне возможностей в области получения атомных ядер.
Предсказанные границы массовой плотности сверхтяжелых элементов в областях атомных номеров Z = 114, 140 и 164 (зеленые точки), пунктиром линейная интерполяция
Стоит отметить, что на вопрос об «острове стабильности» есть и иная точка зрения. Ряд ученых считают, что такие элементы в любом случае не могут быть достаточно долгоживущими, а обнаружение астероидов с аномальной плотностью (типа Полигимнии) может объясняться ошибками в астрономических наблюдениях. Окончательно прояснить вопрос могли бы только исследовательские миссии к таким телам.
Статья спизжена отсюда

Телескоп «Хаббл» обнаружил загадочный взрыв там, где его не должно быть

Примерно один-два раза в год астрофизики регистрируют в разных частях неба мощные голубые вспышки — одно из самых ярких событий во Вселенной. Эти вспышки появляются на небе неожиданно и затем довольно быстро исчезают. За все время наблюдений их открывали только в галактиках. Но последнее событие, которое получило обозначение AT2023fhn, или «Зяблик», произошло там, где ученые не ожидали его увидеть.
LFBOT выглядит как-то так
В 2018 году наземный телескоп ATLAS-HKO, расположенный в обсерватории Халеакала на Гавайях (США), зарегистрировал в оптическом диапазоне яркую вспышку взрыва в галактике CGCG 137-068. Это событие назвали AT2018cow, или «Корова», расстояние до него составило 200 миллионов световых лет. Примечательно оно было по двум причинам. Во-первых, вспышка оказалась ярче обычной вспышки сверхновой в 10-100 раз, а во-вторых, «Корова» исчезла спустя несколько дней.
Такие явления исследователи прежде никогда не видели, поэтому точно не знали, что именно они обнаружили. Выдвигались предположения, что AT2018cow — редкий тип сверхновых. Но обычно сверхновые так себя не ведут: на небе они «светятся» на протяжении недель.
«Корова» (AT2018cow). Снимок телескопа ATLAS-HKO
После «Коровы» подобные вспышки взрывов ученые открывали один-два раза в год, некоторые были намного ярче предыдущих. С 2018-го по 2022-й специалисты обнаружили шесть таких событий. Их даже отнесли к отдельному классу астрономических объектов, которые назвали Luminous fast blue optical transients (LFBOT). Все эти явления объединяют два важных свойства:
— Они запредельно яркие, их яркость несопоставима со сверхновыми, что делает эти вспышки одними из самых ярких событий во Вселенной;
— Их наблюдают только в галактиках.
В октябре 2023 года группа астрофизиков из ESA и NASA опубликовала в электронном архиве препринтов arXiv статью, в которой рассказала, что с помощью совместной работы наземных телескопов и орбитальной обсерватории «Хаббл» удалось открыть и описать седьмое LFBOT-событие. Оно в корне отличается от шести предыдущих. Статья ученых готовится к выходу в журнале Monthly Notices of the Royal Astronomical Society.
Новая вспышка взрыва получила обозначение AT2023fhn, или «Зяблик», ее открыли 10 апреля «Установкой для поиска транзиентов имени Цвикки» (Zwicky Transient Facility). Сперва наземные телескопы обсерватории Gemini, которые находятся в Чили, измерили спектр видимого излучения «Зяблика». Выяснилось, что температура вспышки составляет 20 тысяч градусов Цельсия — не такая высокая, как у некоторых массивных звезд, и, конечно, не такая, как у вспышек сверхновых. Затем телескопы помогли определить расстояние: свет от события шел до Земли три миллиарда лет — на огромном удалении, на котором его может «разглядеть» только космический телескоп. Для этой цели выбрали «Хаббл».
 «Зяблик» (AT2023fhn). Снимок телескопа «Хаббл»
Когда космическая обсерватория стала наблюдать за «Зябликом» в разных частях спектра, ученые поняли, что знают об LFBOT-событиях еще меньше, чем думали ранее. В отличие от шести других аналогичных вспышек, новая наблюдалась не в галактике, а в пустом межгалактическом пространстве — примерно в 50 тысячах световых лет от соседней спиральной галактики и примерно в 15 тысячах световых лет от галактики меньшего размера.
«Мы предполагали, что эти вспышки взрывов могут относиться к редкому типу сверхновых с коллапсирующим ядром — гигантским звездам, которые по астрономическим меркам недолговечны. Эти объекты, прежде чем превратиться в сверхновую, не успевают удалиться очень далеко от места своего рождения — скопления новорожденных звезд. Все предыдущие вспышки мы открывали в спиральных рукавах галактик с интенсивным звездообразованием. То есть объяснение этих вспышек редким типом сверхновых нам подходило. Но последнее событие показало, что мы ошибались», — объяснил ведущий автор исследования Эшли Краймс.
У астрофизиков есть два объяснения природы «Зяблика»:
1. Вспышка вызвана тем, что черная дыра массой от 100 до нескольких тысяч масс Солнца разорвала на части массивную звезду. Шаровое звездное скопление — наиболее вероятное место, где можно было бы обнаружить черную дыру средних размеров. Возможно, «Зяблик» вспыхнул внутри шарового звездного скопления во внешнем гало одной из двух соседних галактик;
2. «Зяблик» — результат столкновения двух нейтронных звезд, движущихся далеко за пределами своей родительской галактики. Эти звезды двигались по спирали навстречу друг другу в течение миллиардов лет, после чего столкнулись, что привело к килоновой — взрыву, излучаемая энергия которого может превосходить в тысячу раз энергию, излучаемую новыми. Согласно гипотезе, если одна из нейтронных звезд сильно «намагничена» (обладает исключительно сильным магнитным полем ) — речь идет о магнетаре, — это может значительно увеличить мощность взрыва. Тогда яркость вспышки может в 100 раз превысить яркость вспышки обычной сверхновой.
В любом случае ученые надеются, что разгадать тайну природы «Зяблика» им поможет космический телескоп «Джеймс Уэбб». По крайней мере, он прояснит, произошла вспышка внутри шарового звездного скопления во внешнем гало одной из двух соседних галактик или нет.
Статья спизжена отсюда

Отличный комментарий!

Империя сражается.

Юпитер в небе Германии сегодня


Я старался, но всё как всегда

Астрономы впервые увидели собственный свет «космической паутины»

Ученые уже делали снимки фрагментов «космической паутины», но раньше ее удавалось разглядеть лишь в свете ярких галактик, а теперь — саму по себе, в темных глубинах космоса.
Трехмерная карта нитей газообразного водорода в «космической паутине» построенная по данным инструмента KCWI обсерватории Кека
Когда в молодой Вселенной образовывались первые звезды и галактики, пространство между ними не становилось совсем пустым. Оставшаяся между объектами материя под действием сил гравитационного притяжения вытягивалась переплетающимися «нитями». Сегодня эта «космическая паутина» — основа структуры Вселенной. К сожалению, она настолько разреженная и тусклая, что разглядеть ее очень тяжело.
В 2014 году астрономам удалось сделать первый снимок «паутины», освещенной излучением далекого квазара. В 2019-м источником света стали молодые галактики, в которых рождались яркие новые звезды. Теперь ученые из Калифорнийского технологического института (США) разработали инструмент и метод наблюдений за «космической паутиной» в темных глубинах космоса, вдали от «космических фонарей».
Модели развития Вселенной показывают, что более 60% водорода, образованного после Большого взрыва, осталось в газообразной форме в нитях «космической паутины». В спектре одна из самых ярких линий водорода — линия Лайман-альфа. Именно ее разглядели авторы нового исследования, опубликованного в журнале Nature Astronomy.
Чтобы поймать излучение далекого и к тому же тусклого водорода в нитях «паутины», ученые разработали инструмент KCWI (Keck Cosmic Web Imager) для Обсерватории Кека, расположенной на горе Мауна-Кеа на Гавайях. KCMI чувствителен к «зелено-голубой» части видимого спектра, волнам длиной от 350 до 560 нанометров.
KCWI (Keck Cosmic Web Imager)
Из-за расширения Вселенной чем дальше находится от нас объект, тем сильнее его свет — в данном случае линия Лайман-альфа — смещается в красную сторону спектра. Поэтому по смещению линий водорода можно оценить расстояние.
С помощью инструмента KCWI авторы исследования сделали серию двухмерных снимков на разных длинах волны вглубь участка космоса, свет от которого шел к нам от 10 до 12 миллиардов лет. И по смещениям они смогли построить трехмерную карту «космической паутины» в этой области.
«Срезы» карты «космической паутины», зеленые точки обозначают известные галактики, с которыми соединяются нити
Сам инструмент — не единственное важное достижение в рамках этого исследования. Так как излучение нитей очень тусклое, его можно спутать с фоновым излучением от нашей атмосферы, от подсвеченной Солнцем межпланетной пыли и даже от Млечного Пути. Чтобы выявить и убрать этот шум, ученые сопоставляли снимки из разных областей неба с нитями на разных расстояниях от нас и «вычитали» один из другого — оставалось лишь излучение нитей.
По таким детализированным снимкам космической паутины астрономы смогут собрать недостающие данные о формировании и эволюции галактик. Также можно будет построить карты расположения темной материи — «невидимой» субстанции, которая, по расчетам, должна составлять примерно 85% всего вещества во Вселенной.
Анимация трехмерного среза сети нитей газообразного водорода, пересекающих пространство между галактиками. Область, охваченная этим наблюдением, находится на расстоянии около 10,5 миллиардов световых лет. Изображенный здесь объем занимает площадь 2,3 на 3,2 миллиона световых лет и простирается на глубину 600 миллионов световых лет (50 миллионов на сегмент)
Статья спизжена отсюда

Отличный комментарий!

Все таки варп существует...

Чтобы вы понимали насколько Астрономам скучно живётся. Узрите Барнард 252 или как назвал человек нашедший его "туманность Дельфин, находится в созвездии Скорпиона".

,космос,звезды,созвездия,туманность,красивые картинки,art,арт,астрономия,наука,Скорпион,дельфин

Некоторые могут подумать что я тупо сфоткал песок, но не будь все так просто..., это 500 миллионов звезд в центре галактики Андромеды.

,космос,звезды,скопление звёзд,андромеда,красивые картинки,art,арт,астрономия,наука

Отличный комментарий!

нихуя не 500сот миллионов, ты там что совсем ебобо?
ты точно все посчитал?
Я уже на протяжении 10 лет смотрю в телескоп на галактики и считаю количество звёзд в каждой. И насчитываю то 500 000 017, то 499 999 998, иногда 500 000 003, а вчера насчитал ровно 500 000 000. Они что там, совсем ебанутые?
Здесь мы собираем самые интересные картинки, арты, комиксы, мемасики по теме (+1000 постов - )