Урок ОСдева №7: первичный загрузчик, финал.

В прошлый раз мы написали процедуру загрузки данных и использовали ее для того, чтобы 
поместить корневую директорию нашей дискеты в оперативную память сразу после собственно
программы-загрузчика по адресу 07C0h:0200h. План действий на сегодня:

-Найти в КД номер первого кластера файла.
-Загрузить первый кластер.
-Следуя по цепочке записей в FAT, загрузить остальные кластеры.

Перед тем, как кодить дальше, давайте  разберёмся, что такое КД и как её использовать для
поиска файлов*.

По сути корневая директория в FAT12 - это таблица, в которой каждому файлу или
поддиректории соответствует одна 32-байтная запись. Давайте посмотрим, что в ней есть.

Байты 0-10: имя файла в формате 8:3. Этот формат подразумевает, что имя файла занимает
ровно 8 байтов, а расширение - 3. Если имя файла меньше 8 символов, оно дополняется
пробелами: так, файл 'loader.bin' в КД будет проходить под именем 'LOADER  BIN'.

Байт 11: атрибуты записи. Набор флагов, позволяющий придать записи особые свойства.
          00000001b = только для чтения
          00000010b = скрытый
          00000100b = системный
          00001000b = метка раздела
          00010000b = директория
          00100000b = архив
          00001111b = LFN (long file name), запись имеет особый формат, поддерживающий длинные
                              имена файлов.

Байт 12: зарезервирован для Windows NT.

Байт 13: время создания в десятых секунды (почему-то 0-199 согласно OSDev Wiki).

Байты 14-15: время, когда был создан файл. Младшие 5 бит - секунды/2 (то есть при интерпретации
значения, например, для вывода на экран, эту часть надо умножать на 2). Следующие 6 - минуты.
Последние 5 бит - часы.

Байты 16-17: дата создания файла. Примерно та же история. День(0-4), месяц(5-8), год(9-15).

Байты 18-19: дата последнего доступа в том же формате, что и дата создания.

Байты 20-21: старшие 16 бит номера первого кластера файла. В FAT12 и FAT16 не используется.

Байты 22-23: время последнего изменения в том же формате, что и время, когда был создан файл.

Байты 24-25: дата последнего изменения в том же формате, что и дата создания.

Байты 26-27: младшие 16 бит номера первого кластера файла.

Байты 28-31: размер файла в байтах.
Довольно много информации, но нас интересуют только два поля: имя записи и младшая часть номера
стартового кластера (старшая половина в FAT12 не используется). Вырисовывается в общих чертах
алгоритм поиска файла? Если нет, я помогу:

1. Переходим к началу КД
2. Считываем имя записи
3. Сравниваем имя записи с именем искомого файла
4. Если имена совпали, файл найден, SUCCESS!
5. Записи кончились?
6. Если кончились - файла нет, аварийно завершаемся
7. Переходим к следующей записи
8. goto 2
Вот таким нехитрым способом мы сможем найти на диске начало файла или, если его нет, уведомить
об этом пользователя и свернуть выполнение загрузчика. Я решил, начиная с этого поста, не
перепечатывать весь листинг из предыдущих уроков. Вместо этого я приложу ссылку на файл в
конце. Это позволит вместить в пост больше полезной информации, не растягивая его до
нечитабельных размеров. А теперь давайте выполним наш поисковый алгоритм в коде. После
call read_sectors пишите:

                   mov cx,BPB_RDentries
                   mov di,0200h
                   mov si,offset fname
                   mov bp,si

next_entry:   mov ax,cx
                   mov bx,di
                   mov cx,11
                   rep cmpsb
                   mov si,bp
                   mov di,bx
                   mov cx,ax
                   je load_FAT
                   add di,32
                   loop next_entry

                   mov ah,3
                   xor bh,bh
                   int 10h

                   mov ax,1300h
                   mov bx,0007h
                   mov cx,22
                   mov bp,offset fname
                   int 10h

                   cli
                   hlt
Что всё это значит? В строчке mov cx,BPB_RDentries мы устанавливаем счётчик основного
цикла. Напоминаю, что в переменной BPB_RDentries у нас хранится число записей корневой
директории. 0200h - смещение загруженной в RAM КД. В SI мы помещаем смещение строки с
именем искомого файла. Кстати, впишите в переменные fname db 'LOADER  BIN'. После этого
мы сохраняем это же смещение в регистре BP. Это может быть пока неочевидно, но позже вы
поймёте, зачем.

Следующий блок кода, начинающийся с метки next_entry, - это собственно цикл просмотра
записей КД и сравнения имён. Первым делом мы сохраняем счётчик цикла и смещение текущей
записи. Счётчик сохраняем потому, что будет вложенный цикл, а смещение - потому, что
строковые инструкции вроде cmpsb изменяют значения регистров SI и DI. Кстати, теперь вам
должно быть понятно, зачем мы сохраняли указатель на строку с именем в BP.

mov cx,11 - установка счётчика вложенного цикла. Имена в FAT12 хранятся в формате 8:3,
значит, нам нужно сравнить две строки по 11 символов. Надеюсь, тут вопросов нет?
Инструкция cmpsb сравнивает значения двух байтов (в нашем случае символов), находящихся
в DS:SI и ES:DI. Префикс rep повторяет инструкцию, пока не обнулится счётчик в CX.
Далее мы восстанавливаем счётчик основного цикла в CX, смещение текущей записи в DI и
смещение строки с именем файла в SI. В старых версиях здесь у меня были пары инструкций
push/pop, но потом я подумал, что трансфер из регистра в регистр быстрее, чем обращение
к стеку, и поменял. Никогда не вредно сэкономить пару циклов.

Если в результате rep cmpsb все символы совпали, в регистре флагов будет установлен бит
ZF. Команда je load_FAT выполняет переход к метке load_FAT если флаг ZF установлен.
В случае если строки не совпали, мы переводим DI к следующей записи в КД и продолжаем
цикл командой loop next_entry. Тут бы можно было и закончить, но нужно обработать
отсутствие файла. С этим набором инструкций мы уже знакомы по предыдущему посту.
Первый блок возвращает положение курсора в DH,DL, а второй выводит от этой позиции
сообщение. Отличается только само сообщение. Вместо 'Disk read error.' мы выводим строку
с именем файла. Внимание, тут небольшой хак. Идея в том, чтобы вывести следующий текст:
'{filename} not found!'. Вызвать вывод строки два раза, но зачем? Если поместить в
разделе переменных текст ' not found!' сразу после переменной fname, а при вызове int 10h
указать в CX не 11 символов, а 22, то выведется сначала имя файла, а потом ' not found!'
Конечно же, этот текст обязательно должен быть сразу после fname. Добавьте строчкой ниже
db ' not found!' После этого останавливаем процессор парой команд cli и hlt. Не так-то
сложно, да? Впрочем, файл ещё нужно загрузить.

Для этого нам нужно будет загрузить в память FAT и разобраться, как ею пользоваться.
Давайте начнём с первой задачи, она чисто техническая и не требует умственного напряжения.
После hlt набирайте:

Load_FAT:          mov ax,[di+26]
                         mov cluster,ax
                         mov ax,BPB_reserved
                         mov cx,total_FATs_size
                         mov bx,BPB_RDentries
                         shl bx,5
                         add bx,0200h
                         mov FAT_offset,bx
                         call read_sectors
В строчке mov ax,[di+26] мы считываем из записи КД номер первого кластера файла, а затем
сохраняем его в переменной cluster. Далее, мы помним, что FAT у нас идут сразу после
зарезервированных секторов, поэтому в AX помещаем BPB_reserved. В CX у нас будет число
секторов, которое надо загрузить, то есть total_FATs_size. Загружать FAT будем сразу после
КД, то есть в 07С0h:0200h+размер КД. Размер КД = число записей КД*размер записи (32 байта).
Помещаем в BX число записей (BPB_RDentries), умножаем на 32 (shl bx,5 эквивалентно умножению
на 32, но выполняется быстрее) и добавляем 0200h. Готово! Сохраняем на будущее в переменной
FAT_offset (кстати, объявите её рядом с прочими) и вызываем read_sectors.

А теперь время вернуться к теории. Что такое FAT? Не поверите, но это тоже таблица, и её
структура ещё проще, чем у КД. Каждая запись в FAT соответствует кластеру на диске. FAT
можно назвать оглавлением диска (украл с OSDev Wiki). Кластер может быть свободен, занят
частью файла, зарезервирован ОС или испорчен. Если кластер хранит часть файла, то его
запись в FAT будет содержать номер следующего кластера файла. Понятно? Зная номер первого
кластера файла, мы можем загрузить его в память, потом заглянуть в FAT, найти нужную запись
и считать номер следующего кластера. Повторять до конца файла. Звучит просто, но, как
всегда, есть большое "НО"! Размер записи в FAT12 - 12 бит. Мы не можем оперировать
12-битными ячейками. Мы можем считать 8 или 16. То есть, если мы загрузим в AX начало FAT,
то в регистре окажется первая запись и часть второй. А если сдвинемся на один байт, то
получим конец первой записи и всю вторую. Давайте попробую проиллюстрировать для
наглядности. В верхней строчке будет часть FAT, разделённая на записи, а в нижней она же,
но поделенная на 8-битные куски.

0 0 0 1 0 1 1 1 0 0 1 0|0 1 1 1 0 0 1 0 1 0 0 0|0 0 1 0 0 1 0 0 0 1 1 1          3 Записи.
0 0 0 1 0 1 1 1|0 0 1 0 0 1 1 1|0 0 1 0 1 0 0 0|0 0 1 0 0 1 0 0|0 1 1 1         4,5 байта.

Решение в том, чтобы, считывая каждый нечётный кластер, сдвигать значение на 4 бита вправо, а
у чётного - обнулять 4 старших бита. Зная всё это, давайте писать код:

                             push 0050h
                             pop es
                             xor bx,bx
read_cluster:           mov ax,cluster
                             sub ax,2
                             movzx cx,BPB_secperclust
                             mul cx
                             add ax,datasector
                             call read_sectors
                             mov ax,cluster
                             mov si,ax
                             shr ax,1
                             add si,ax
                             add si,FAT_offset
                             mov dx,[si]
                             mov ax,cluster
                             test ax,1
                             jnz odd_cluster
                             and dx,0000111111111111b
                             jmp short done
odd_cluster:           shr dx,4
done:                     mov cluster,dx
                             cmp dx,0FF7h
                             jb read_cluster
Финальный рывок. Первое, что мы делаем - устанавливаем сегмент для загрузки файла. Так как
BIOS нам больше не указ, выбирать можно самостоятельно. Я бы с удовольствием отправил его
в 0000h:0000h, но первые 1280 байт заняты важными вещами, о которых поговорим позже.
Ближайший свободный участок RAM - 0050h:0000h (или 0000h:0500h, это тот же самый адрес
если вы вдруг забыли правила адресации сегмент:смещение). Обнуляем BX, так чтобы пара
ES:BX указывала на 0050h:0000h. Считываем в AX номер первого кластера файла. Дальше мы
вычитаем 2 из этого номера. Зачем? Затем, что значения 0 и 1 в FAT зарезервированы и не
используются в качестве номеров, а номер, указанный в таблицах, на 2 больше, чем правильное
значение. Да, это идиотизм.

Загружать будем не сектор, а кластер (что в нашем случае одно и то же, но всё-таки),
поэтому в качестве числа секторов помещаем в CX переменную BPB_secperclust и на неё же
умножаем номер кластера. AX*CX в данном случае дадут нам номер первого сектора нужного
кластера. А так как кластеры в FAT начинают считаться от начала области данных,то для
абсолютного значения добавляем к AX datasector. Готово. Вызываем read_sectors и загружаем
первый кластер файла в RAM.

Дальше будет немножко математической магии, объяснять которую я не буду. Если интересно -
разберётесь самостоятельно, там не так сложно. Остальным предлагаю просто поверить, что
смещение записи кластера внутри FAT = 3/2 номера кластера. Значит, берём в AX номер
кластера, его же помещаем в SI, делим AX на 2 и прибавляем к SI. Вуаля, смещение
записи от начала FAT найдено. Добавляем к нему смещение FAT_offset и считываем в DX
значение записи.

Теперь надо проверить, чётная ли запись. Для этого опять берём в AX номер кластера и
делаем сравнение с 1. Если флаг ZF не установлен (то есть 0 бит значения равен 1),
значит, номер записи - нечётный, переходим к odd_cluster и сдвигаем значение вправо на
4 позиции. Если чётный - делаем логическое "И" с маской 0000111111111111b и обнуляем
тем самым 4 старших бита. Теперь у нас есть содержимое нужной записи без всяких
посторонних хвостов, то есть номер следующего кластера. Сохраняем его в переменной
cluster. Дальше у нас идёт сравнение с номера с числом 0FF7h. Дело в том, что,
начиная от этого значения в FAT идут специальные коды, которые могут означать конец
файла, испорченный сектор и т.д. Для нас это значит, что если в качестве номера
кластера мы получили 0FF7h или больше, продолжать загрузку не имеет смысла. Поэтому
продолжаем цикл только если DX меньше 0FF7h. Я умышленно оставляю здесь дыру и
предлагаю всем заинтересованным попытаться самостоятельно сделать обработку ошибки,
связанной с битым кластером (код 0FF7h). Код конца файла, кстати, 0FF8h. Вся необходимая
для этой задачи информация и примеры кода уже есть в этом посте.

А мне остаётся только добавить в конце три строчки:

                    push 0050h
                    push 0000h
                    retf
Этот набор команд мы уже помним из старых постов. Помещаем в стек сегмент, потом
смещение, и передаём управление загруженному файлу командой retf. Поздравим себя!
Первичный загрузчик готов. Да, он умеет немного, но и задача у него всего одна:
найти загрузчик второго уровня, поместить его в RAM и отдать штурвал. Если вы
скомпилируете файл без инструкций org 1FEh и dw 0AA55h, то увидите, что программа
занимает всего 447 байт. Значит, у нас есть в запасе ещё 63. Как раз должно
хватить на проверку успешного считывания кластеров. У меня вместе с ней вышло 497
байт. Можете подсмотреть в приложенном файле, хоть это и неспортивно. Если вы
поместили загрузчик на дискету и получили в bochs (или на реальной машине) вот такой
экран, то всё работает как надо!

Plex86/Bochs UGABios (PCI) current-cvs 08 Jul 2014 This UGA/UBE Bios is released under the GNU LGPL
Please visit :
. http://bochs.sourceforge.net . http ://www.nongnu.org/vgab ios
Bochs UBE Display Adapter enabled
Bochs BIOS - build: 07/10/14
$Revis ion: 12412 $ $Date: 2014-07-10 09:28:59

Чистая дискета:
https://drive.google.com/file/d/1Bold4ds8oEruHQ7fJZKHglVo7A2Vc5MR/view?usp=sharing

Листинг:
https://drive.google.com/file/d/1Q5EtKX5kyF4MWcBeD8a6Jz5cPtqZja9C/view?usp=sharing

Bochs:
https://drive.google.com/file/d/16k2Gpr7oPSekq4rAhmtBV0IPnIteDLlE/view?usp=sharing

* FAT поддерживает вложенные директории, и они ничем принципиально не отличаются
от корневой, так что всё нижеизложенное касается и их.