Результаты поиска потегугенетика

Дополнительные фильтры
Теги:
генетикановый тег
Автор поста
Рейтинг поста:
-∞050100200300400+
Найдено: 110
Сортировка:
Dmitry Smirnov
@StrangeDecision
Я не верю в генетику. Наверное, это передалось мне от отца.
24.12.15, 12:46
РЕТВИТЫ: 2 12ЛАЙКА(-ОВ),генетика,твиттер

Когда родился ты

ПОЗДРАВЛЯЙ?.
ЭТО СТРАНА ПЕРВОГО МИРА ХОТЯ ЬЭ, Я ПРАВ ?
ВЗАОХ
ГАЕ МОИ ОТЕЦ, ?
В ТЮРЬМЕ,лотерея,генетика,удача,песочница

Гены, от которых вырастают крылья. И ноги. И всё остальное.

У каждого многоклеточного животного есть своё многоклеточное, только ему присущее тело. Любую муху мы можем отличить от слона. Это легко, ведь их тела соответствуют определённому плану строения. Для мухи, например, это шесть лап, крылья, сегменты тела. В то же время у слона конечностей меньше и крыльев нет. Но как этот особенный план записан в слоне или мухе? Если задуматься, то он должен быть уже в первой клетке, из которой разовьётся организм. И конечно, он записан в геноме этой первой клетки — в виде генов и межгенных регуляторных участков. Так можно ли сделать из мухи слона?

➡ Особенные гены для особенных задач

  Генетики часто используют в работе плодовую мушку. Как следствие, для неё известно впечатляющее количество нарушений в разных генах — мутаций. Мутации эти были выявлены в основном по изменению внешнего вида мухи. Например, есть гены, продукты которых — белки, синтезирующие красный пигмент в глазах насекомого. Благодаря этим генам у плодовой мушки дикого типа глаза красные. Если один из таких генов отключить, глаза лишатся пигмента и мухи-мутанты будут белоглазыми. Повреждения тех или иных генов могут вообще лишить насекомое глаз, или щетинок, или окраски тела. Но есть мутации, эффект от которых намного более драматичен.

  В конце 40-х годов ХХ века биологам попалась муха с ногами вместо антенн на голове. Ноги на голове — это уже не просто другой цвет глаз!
АНТЕННЫ,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,эволюция,генетика,энтомология
 
  Такое происшествие — не «потеря чего-то», а «превращение одного в другое». Или ещё пример. Мушиная грудь состоит из трёх сегментов, на втором из которых располагаются крылья. Известны мутанты, у которых третий сегмент груди превращён во второй, и муха имеет две пары крыльев. Вы не задумывались, как появились четырёхкрылые бабочки? Их предкам было достаточно сохранить мутации, приводящие к развитию лишних, но столь пригодившихся им крыльев.
,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,эволюция,генетика,энтомология

  Мутации, вызывающие превращение одних частей тела в другие, назвали гомеозисными (от лат. homеo — подобный). Можно определить, где произошла та или иная мутация, и выяснить, какой именно ген она повредила. Такие гены были найдены, их тоже назвали гомеозисными. Насколько эти гены распространены у живых организмов и можно ли найти их у человека? Явные следы сегментации тел млекопитающих остались в строении скелета. Вы знаете, что бывают люди, у которых обе челюсти — верхние? Что можно легко превратить спинные позвонки мыши в грудные, выключая определённые гены? Подобно тому как мухе можно «подарить» вторую пару крыльев, мыши можно легко обеспечить дополнительную пару рёбер. И не одну. Это тоже результат мутаций в гомеозисных генах. Как выяснилось, они есть у всех многоклеточных организмов.

➡ Раскрой мне свои гомеозисные гены, и я скажу, кто ты

  Вообще говоря, где грань между мутацией и нормой? Вы обидитесь на слова о лишней паре крыльев, если вы бабочка. Замечания об избыточных ногах, возможно, расстроят креветку. А у неё просто работает ген, который у мухи отключён, и потому она имеет не шесть ног, а десять.

  Гомеозисные гены у всех организмов очень похожи. Вероятно, с задачей планирования своего тела столкнулось уже первое многоклеточное животное. И решение этой задачи унаследовали все современные животные. Например, у мучного жука есть восемь гомеозисных генов, которые расположены в геноме поблизости друг от друга — в составе одного генного кластера. У плодовой мушки таких генов тоже восемь, но расположены они двумя группами далеко друг от друга. Вероятно, такая ситуация возникла из-за хромосомной перестройки, в результате которой исходный комплекс разделился надвое, но сохранил работоспособность. Большинство насекомых в этом смысле похожи на мучного жука. Похожа на мучного жука и мышь. У неё группа гомеозисных генов, аналогичная генам насекомых, расположена в едином кластере. Только таких кластеров — четыре. Очевидно, они возникли в результате последовательного удвоения одиночной предковой группы генов. Гомеозисных генов у мыши в несколько раз больше, чем у мухи, но все они похожи на восемь мушиных и, вероятно, возникли за счёт удвоения исходных генов и последующей самостоятельной эволюции.
Муха
Мышь
1аЬ рЬ	Díd	$сг	Апф ,, иЬх аМ-А АМ-В
Г> Г) Е П.// В
Д, Л Л Л 4,...
Ь1 Ь2 ЬЗ Ь4 Ь5 Ь6 кластер 1
а1 а2 аЗ а4 а5 аб
()□ В Р В' Р
кластер 2
(I
с4 с5	аб
. Е В
кластер 3
Ь7 Ь8 Ь9
  £ В___________________
а7
а9 аЮ	а11
Д □	Д
а13
с8 с9 с10	с11	с12	с13
сЛ ггп	63 "ТТ	64	68	69	610

  В целом просматривается связь: чем сложнее устроен организм животного, тем больше у него гомеозисных генов. Так, у всех беспозвоночных есть только один содержащий их кластер. При этом у таких примитивных организмов, как губки, в нём всего один либо два гена. А вот у примитивных позвоночных — миног — уже четыре кластера, как у мыши. Кстати, первые гомеозисные мутации были обнаружены и описаны у растений… Например, на месте лепестков могут появляться тычинки.

➡ Сферы влияния

  Гомеозисные мутации у плодовой мушки обнаружили давно, в начале XX века, и с тех пор описали большое их количество. Как позже выяснилось, не все они расположены в генах. Но тогда генетики ещё не знали, что же, если не гены, может быть повреждено мутациями. Понимание принципов работы гомеозисных генов росло параллельно с развитием биологии, и едва ли не всем новым фактам о работе генома находилось место в кластерах гомеозисных генов. Часто изучение самих гомеозисных генов рождало новые знания, — многие генетические механизмы впервые были показаны именно на них. Попробуем разобраться, к чему это привело.

  Лучше всего изучен комплекс гомеозисных генов плодовой мушки Bithorax («двойная грудь»), названный по найденной в нём мутации, которую обнаружили почти сто лет назад, в 1915 году. Bithorax-комплекс — это отделившаяся часть единого предкового комплекса гомеозисных генов. Он ответственен за развитие задних двух третей тела мухи. Первая треть тела контролируется другой частью разделившегося кластера — комплексом Antennapedia («ноги-вместо-антенн»). Может, не очень понятно, почему целый комплекс, отвечающий за формирование первой трети тела, назван в честь головных антенн, но слишком уж была примечательна мутация, превращающая антенны в ноги.
Ubx	abd-A
Abd-B,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,эволюция,генетика,энтомология
(Схема Bithorax-комплекса генов плодовой мушки. Цвета сегментов тела мухи отвечают участкам комплекса генов того же цвета, мутации в которых влияют на эти сегменты. Стрелками обозначены гомеозисные гены Ubx, аbd-A, Abd-B.)

  Когда разных мутаций в Bithorax-комплексе обнаружили несколько десятков, удалось вывести соответствие между их положением в геноме и частью тела мухи, в которой возникает нарушение. В комплексе всего три гена. Но именно они определяют строение девяти сегментов тела. Более удивительно, что многие участки Bithorax-комплекса, влияющие на целый сегмент, вообще лишены генов. Число таких участков влияния соответствует числу сегментов тела, подчинённых Bithorax-комплексу.

  С развитием методов молекулярной биологии в 80-е годы XX века выяснилось, что в разных сегментах тела три гена Bithorax-комплекса работают по-разному. Стало очевидно, что работа генов эукариот (организмов, чьи клетки содержат ядра) может регулироваться отдалёнными участками ДНК, в которых генов нет. В этих участках могут находиться последовательности-энхансеры*, усиливающие работу гена, либо последовательности-сайленсеры**, способные работу гена прекратить. Причём энхансеры и сайленсеры сами могут быть отрегулированы: в каких-то тканях быть выключенными, а в каких-то других работать. Каждый цветной блок на рисунке вверху — это кластер регуляторных последовательностей, ключевых для правильного развития соответствующего сегмента тела. Именно под их управлением работа трёх генов Bithorax-комплекса различна в каждом сегменте. В свою очередь за счёт уникального сочетания продуктов гомеозисных генов в каждом сегменте они развиваются по-разному. Как так получается, что в каждом сегменте тела работает только свой уникальный регуляторный участок ДНК для гомеозисных генов? Сейчас этот вопрос активно изучается, но чёткого ответа на него пока нет.

  Продукты гомеозисных генов — белки, которые связываются с ДНК и влияют на работу других генов. В результате «под ними» работают десятки генов, уникальная настройка которых позволяет выпустить крылья или отрастить ноги. Итак, понятно, как за счёт разной работы гомеозисных генов в теле появляется с десяток сегментов (в каждом из которых эти гены работают по-своему), но непонятно, за счёт чего возникают различия внутри сегмента. Почему, например, такие разные части тела, как крылья и ноги, находятся в одном сегменте? Ответ кроется в структуре регуляторных участков Bithorax-комплекса. Они включают энхансеры и сайленсеры для гомеозисных генов. В каждом сегменте тела главную роль играет один из регуляторных участков, но в разных тканях этого сегмента он ведёт себя по-разному, поскольку в разных тканях активны разные энхансеры и сайленсеры. Так один регуляторный участок может обеспечить тонкие различия в работе гомеозисных генов в каждом типе тканей одного сегмента. Откуда регуляторная ДНК «знает», в какой ткани ей работать, а в какой молчать? Скажем лишь, что она знает это намного лучше нас… У нас же на этот счёт есть лишь ряд гипотез.

➡ Планы изменились

  Сотни миллионов лет эволюция «лепила» животных, меняя их тела. Комплексы гомеозисных генов — ключевая деталь в конструкторе тела. Чтобы поверить, что этот конструктор способен на самые разные фокусы, можно взглянуть на муху и, скажем, кита.

  Вам уже надоел детский Лего? Конечно, до создания новых тел ещё далеко и последствия таких действий неочевидны, но мы постепенно начинаем разбираться в правилах сборки. Можно идти путём эволюции. Например, чтобы понять, что требуется для образования конечностей, можно попробовать сравнить работу гомеозисных генов у рыб и мышей. Как считается, наши руки и ноги в ходе эволюции возникли из плавников. Было замечено, что активность одного из гомеозисных генов у мышей выше, чем у рыб. Исследователи предприняли попытку усилить его работу у рыб в надежде, что их плавники станут похожими если и не на мышиные лапы, то хотя бы на их примитивный аналог. В новых условиях костная ткань в плавниках развивалась активнее, форма плавников стала округлой и более близкой к форме лап. Конечно, это лишь намёк на настоящие ноги. Скорее всего, на пути к выходу на сушу у рыб менялась не только работа самих гомеозисных генов, но и ответ на неё других генов.

  За последние сто лет, прошедшие со времени открытия первых мутантных мух с ногами на голове и лишними крыльями, мы поняли, почему подобные изменения возникают. Мы даже можем планомерно влиять на строение тела мухи, мыши или рыбы, меняя их геном. При этом до полного понимания того, как строение тела записано в геноме, ещё далеко. Но по крайней мере теперь мы можем многое сказать на тему, почему муха так непохожа на слона.

* Энхансеры (от англ. enhance — усиливать) — последовательности ДНК, связывающие белки-активаторы и способные усиливать работу генов.

** Сайленсеры (от англ. silence — подавлять) — последовательности ДНК, связывающие белки, негативно влияющие на работу окружающих генов.

Автор: Павел Елизарьев. Институт биологии гена РАН.

Источник: http://www.nkj.ru/archive/articles/23728/

Хромосомы ощетинились дошираком

  Суперкомпьютер «Ломоносов» помог исследователям из МГУ разгадать одну из главных загадок молекулярной биологии и показать выгоды укладки ДНК по принципу доширака

  Группа исследователей из Московского государственного университета имени М.В. Ломоносова попробовала разобраться с одним из наименее ясных на сегодня вопросов молекулярной биологии — с вопросом о том, как в ядре клетки упаковываются нити ДНК. Ученые пришли к выводу, что укладка в особое состояние под названием «фрактальная глобула» за счет ускоренной тепловой диффузии позволяет всей этой генетической машинерии клетки работать с максимальным быстродействием. Результаты своего исследования они опубликовали в майском номере престижного физического журнала Physical Review Letters [1], импакт-фактор которого равняется 7,7.

  Фрактальная глобула — понятие математическое. Если вы уроните на пол длинную леску от спиннинга, она свернется в такой невообразимо подлый клубок, что вам придется либо распутывать его часами, либо бежать в магазин за новой катушкой.

  Это — обычная, так называемая равновесная глобула. Фрактальная глобула — структура в этом смысле намного более вежливая. Применительно к леске это комок, в котором леска ни разу не завязалась в узел, она просто свернулась множество раз, так, чтобы ни одна петля вокруг другой не запуталась. Такая структура представляет собой множество свободных петель разного размера — потяни ее за два конца, и она легко распутается. Из-за такой укладки, похожей на укладку нынешних макарон быстрого приготовления «Доширак», наши физики Александр Гросберг, Сергей Нечаев и Евгений Шахнович, впервые предсказавшие ее еще в 1988 году, назвали такую глобулу «складчатой». В последние годы ее чаще называют фрактальной — и звучит научнее, да и полней отражает свойства такой глобулы, поскольку, как и во всех фракталах, ее структура (в данном случае форма мелких и крупных петель) повторяется на малых и больших масштабах.
,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,The Brights,генетика,молекулярная биология
  Долгое время это предсказание оставалось невостребованным. Но результаты исследований последних лет указывают, что хромосомы (нити ДНК) складываются в ядре именно в такую конфигурацию — во фрактальную глобулу. Сегодня по этому поводу в научном сообществе нет консенсуса, но большинство специалистов, работающих в этой области, сильно заинтриговано, и последние пять-семь лет наблюдается целый поток исследований, посвященных геному, свернутому во фрактальную глобулу.

  Интуитивно это было понятно. Двойная спираль ДНК, укрепленная соответствующим набором белков, представляет собой длиннющую нить, называемую хроматином.

  И если этот хроматин представляет собой библиотеку технических руководств по синтезу того или иного белка, нужного организму, то лучше было бы текст этих руководств без нужды не трогать и, соответственно, избегать ненужных перекрещиваний одного гена с другим, складывать хроматиновую нитку так, чтобы ни в одном месте части этой нитки между собой не завязывались узлом. Поэтому, как бы эта нитка хроматина в ядре ни складывалась, она не должна повторять судьбу нечаянно упавшей на пол рыболовной лески, то есть быть не простой глобулой, а фрактальной.

  Вдобавок нитка во фрактальной глобуле, не имеющая узлов, по идее должна иметь более высокую свободу перемещений, что для ДНК немаловажно. Для того чтобы ДНК нормально функционировала, необходимо, чтобы ее отдельные части в нужный момент встречались между собой, «включая» сигнал к считыванию и указывая всей системе место, откуда это считывание следует начинать, причем все это должно происходить достаточно быстро.
,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,The Brights,генетика,молекулярная биология
  «Согласно существующим сегодня теориям, в полимерной цепи, свернутой в обычную глобулу, средний квадрат теплового смещения частицы (в данном случае звена этой цепи) растет пропорционально времени в степени 0,25», — рассказал старший научный сотрудник кафедры физики полимеров и кристаллов физического факультета МГУ Михаил Тамм, являющийся одним из авторов исследования.

  По словам Михаила Тамма, ему вместе с коллегами удалось придумать до некоторой степени аналогичную теорию для звена полимерной цепи, свернутой во фрактальную глобулу:«Мы сумели оценить тепловую динамику, свойственную этому виду укладки. Проведенное нами компьютерное моделирование хорошо подтвердило теоретический результат», — отметил Михаил Тамм.

  Ученые из МГУ создали свой метод компьютерного моделирования, который позволял укладывать хроматиновую цепочку во фрактальную глобулу и отслеживать происходящие там тепловые процессы. Им удалось сделать то, что не получалось у их предшественников, — смоделировать ситуацию с длинной цепочкой, состоящей из четверти миллиона звеньев.

  По словам Михаила Тамма, моделирование длинных цепочек, а именно они позволяют получить сколько-нибудь значимые результаты, затрудняется тем, что они очень долго приходят в равновесное состояние, при котором уже можно исследовать происходящую там тепловую диффузию.

  Удачно разрешив эту проблему за счет грамотно выстроенной программы и большого компьютерного времени на суперкомпьютере МГУ «Ломоносов», исследователи смогли оценить динамику теплового движения во фрактальной глобуле. Оказалось, что частицы — то есть звенья хроматиновой цепочки — движутся быстрее, чем в обычной, не фрактальной, глобуле. Здесь средний квадрат теплового смещения звена хроматиновой цепочки рос пропорционально времени не в степени 0,25, как в обычной глобуле, а в степени 0,4, то есть движение звеньев там оказывалось значительно более быстрым. Что, по-видимому, в числе прочего и определило для хроматиновой нити выбор фрактальной глобулы в качестве способа ее укладки в ядре.

  Исследователи надеются, что их работа позволит более полно понять, как именно функционирует вся машинерия, связанная с хранением и считыванием информации в ДНК.

  «С точки зрения динамики нам бы хотелось разобраться с тем, какие там встроенные характерные времена, какие процессы могут происходить просто за счет теплового движения, а что неизбежно требует привлечения активных элементов, ускоряющих работу ДНК», — резюмировал Михаил Тамм.

Григорий Колпаков, Владимир Гелаев

1. Anomalous Diffusion in Fractal Globules. Doi: 10.1103/PhysRevLett.114.178102. — http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.178102
Источник — http://www.gazeta.ru/science/2015/05/25_a_6714661.shtml

Интеллектуальные способности наследуются по женской линии

Как бактерии отличают свою ДНК от вирусной

  Молекулярный мусор помогает бактериальной клетке запоминать последовательности из вирусных генов, чтобы впоследствии использовать их для отражения вирусной атаки.
,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,генетика,микробиология,наука
  Мы с детства помним картинку из школьного учебника: вирус-бактериофаг с «головой»-многогранником, стебельчатым «туловищем» и несколькими «ножками», похожий на какой-то загадочный аппарат, садится на бактериальную клетку и впрыскивает в неё свой геном. Последствия операции – в клетке появляются новые вирусные частицы (всё те же «головы», «туловища» и «ножки»), которые в конце концов разрушают бактерию. Она кажется нам совершенно беззащитной перед вирусной атакой но было бы действительно странно, если бы бактериальные клетки не обзавелись противовирусной «системой сдерживания».
,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,генетика,микробиология,наука
(Бактериофаги на кишечной палочке.)

  Такие системы действительно есть, и одну из них, под названием CRISPR/Cas, часто называют бактериальным иммунитетом – потому что с её помощью бактерия может запоминать информацию о вирусах и использовать её для защиты от будущих инфекций. То есть здесь у нас есть аналог иммунной памяти многоклеточных животных. Работает она так: в бактериальной хромосоме есть участок CRISPR, сокращённо от Clustered Regularly Interspaced Short Palindromic Repeats – короткие палиндромные повторы в ДНК, регулярно расположенные группами. Повторы перемежаются другими последовательностями, которые происходят из генома бактериофагов. Это и есть «иммунная память». Когда в клетке появляется чужеродная ДНК, бактерия снимает РНК-копию с «запомненной» последовательности и сравнивает её с пришельцем. Если совпадение есть, значит, чужую ДНК нужно разрушить. Разумеется, вся процедура осуществляется с помощью специальных белковых комплексов.
Virus DNA
O
Plasmid
DNA
® Acquisition
Leader 10 987654321 cas locus	CRISPR	array
@ Expression
\7
,9>
_JUU1_T( it fl Ti Ti
O -	Pre-crRNA
Cas proteins
*
crRNA
Plasmid DNA cleaved
fr
(?) Interference
Virus DNA cleaved,Реактор познавательный,галилео, реактор познавательный,
  Любая защитная система должна отличать своих от чужих. Наш иммунитет не должен атаковать здоровые клетки тела, соответственно, бактериальная система CRISPR/Cas должна как-то чувствовать разницу между ДНК вируса и ДНК самой бактерии ещё на стадии «запоминания». На самом деле, у бактерий есть и «аутоиммунные заболевания», когда система противовирусной защиты начинает повреждать их собственную ДНК, однако такие случаи весьма редки. То есть механизм различения «свой-чужой» всё же работает.

  Как именно он работает, выясняли исследователи из Института Вейцмана и Тель-Авивского университета. Они ввели в бактериальную клетку плазмиду, которая имитировала вирус. 
(Плазмидами называют небольшие кольцевые молекулы ДНК, существующие у бактерий наравне с главной большой хромосомой; они обладают значительной самостоятельностью и могут удваиваться вне зависимости от репликации хромосомы, которая привязана к клеточному делению.)
,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,генетика,микробиология,наука
 С помощью белков Cas1 и Cas2 (которые входят в систему CRISPR/Cas) бактерия встраивала ДНК плазмиды в хромосому, причём именно туда, где должна храниться информация о вирусной инфекции. 

  Оказалось, как пишут Ротем Сорек (Rotem Sorek) и его коллеги в Nature, система CRISPR и её белки Cas1 и Cas2 распознавали именно ту ДНК, которая слишком активно удваивалась. А ведь это вирусная стратегия: любой ценой создать как можно больше копий своего генома. Иными словами, если молекулярные компоненты CRISPR/Cas чувствовали ДНК, которая быстро размножается, то система делала вывод, что в клетку проник вирус и его нужно запомнить. Но как именно происходило узнавание?

  При репликации ДНК в ней неизбежно случаются повреждения, разрывы, которые тут же ремонтируются репарационными машинами. Репарирующие ферменты сначала обрабатывают место повреждения так, чтобы его удобно было ремонтировать, а потом уже собственно ликвидируют разрыв. Вот в процессе подготовки к ремонту от ДНК и остаются фрагменты, которые «иммунная система» бактерий может подхватить и вставить в свою «библиотеку вирусов». С другой стороны, в бактериальной ДНК есть определённые сигнальные последовательности, которые говорят репарирующей машине, когда нужно прекратить улучшать место повреждения. Такие стоп-сигналы уменьшают количество ДНК-обрезков, которые может использовать система CRISPR/Cas. И – самое главное – таких стоп-сигналов много в ДНК бактерий, но почти нет в ДНК вирусов. То есть при ремонте вирусной ДНК молекулярного мусора образуется много, а при ремонте бактериальной ДНК – намного меньше. 
,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,генетика,микробиология,наука
(Реплицирующаяся ДНК – репликационный пузырь образовался там, где идёт синтез второй копии молекулы.)

  Получается, что бактериальные клетки используют два самых обычных процесса, репликацию и репарацию, чтобы отличить свою ДНК от чужой; но, кроме того, у них есть ещё и маркеры – специальные нуклеотидные последовательности, которые помогают оптимизировать процедуру и сделать её более эффективной.

  Защитную систему CRISPR/Cas обнаружили всего несколько лет назад, и она мгновенно стала исследовательским «хитом». Дело не только в том, что, воздействуя на иммунитет вредных бактерий, мы можем подавить их рост с помощью бактериофагов, и тем самым уменьшить вероятность заболеваний. С помощью CRISPR/Cas, как оказалось, можно редактировать геномы животных – разумеется, для этого молекулярные составляющие системы программируются на распознавание участков в ДНК крысы или обезьяны. Год назад китайские специалисты из Нанкинского медицинского университета получили таким образом геномодифицированых макак-крабоедов, правда, модификацию осуществляли ещё на стадии эмбриона. Молекулярные инструменты «бактериального иммунитета» позволяют избавиться от вредных мутаций, заменять больной ген здоровым и т. д. Учитывая количество работ, посвящённых CRISPR/Cas, можно надеяться, что в скором времени редактирование генома человека, даже вполне взрослого, станет рутинной процедурой. 

Кирилл Стасевич

Nature: http://www.nature.com/nature/journal/vaop/ncurrent/fu..
Источник: http://www.nkj.ru/news/26203/
Здесь мы собираем самые интересные картинки, арты, комиксы, мемасики по теме (+110 постов - )