Результаты поиска потегуАстрономия

Дополнительные фильтры
Теги:
Астрономияновый тег
Автор поста
Рейтинг поста:
-∞050100200300400+
Найдено: 372
Сортировка:
Коричневый карлик – это астрономический объект, являющийся чем-то средним между планетой и звездой. Масса коричневых карликов обычно меньше 0,075 массы Солнца, или примерно 75-ти масс Юпитера. (Эта максимальная масса немного выше для звёзд, содержащих меньшие количества тяжёлых элементов, чем Солнце.) Многие астрономы проводят границу между коричневыми карликами и планетами примерно по массе, равной 13 юпитерианским массам.

Разница между коричневыми карликами и звёздами состоит в том, что в отличие от звёзд коричневые карлики не могут достигнуть уровня стабильной светимости через осуществление термоядерного синтеза обычного водорода. Как звёзды, так и коричневые карлики производят энергию путём синтеза дейтерия (редкого изотопа водорода) в первые несколько миллионов лет своей жизни. Затем ядра звёзд продолжают сжиматься и разогреваться, по мере того как звёзды синтезируют водород. Однако коричневые карлики избегают дальнейшего сжатия, так как их ядра достаточно плотные, чтобы поддерживать своё существование за счёт давления вырождения электронов. Эти коричневые карлики с массами свыше 60 юпитерианских масс начинают синтезировать водород, но затем они стабилизируются и синтез прекращается.

Цвет коричневых карликов на самом деле не коричневый, а, скорее, от тёмно-красного до пурпурного, в зависимости от их температуры. Объекты с температурами ниже примерно 2200 К содержат в своих атмосферах зёрна минералов. Поверхностные температуры коричневых карликов зависят как от их массы, так и от их возраста. Самые массивные и молодые коричневые карлики разогреваются аж до 2800 К, перекрываясь своим температурным диапазоном со звёздами очень малой массы, или красными карликами. (Для сравнения, температура поверхности Солнца достигает 5800 К.) Все коричневые карлики в конце концов охлаждаются ниже минимальной температуры для звёзд главной последовательности в 1800 К. Самые старые и маленькие могут остыть даже до 300 К.

Коричневые карлики впервые были упомянуты в 1963 г. индийским астрономом Шивом Кумаром, который называл их «чёрными карликами». Американский астроном Джилл Тартер предложил название «коричневый карлик» в 1975 г.; хотя коричневые карлики совсем не коричневые, название прижилось, потому что считалось, что в этих объектах содержится большое количество пыли, и более подходящее название «красный карлик» уже описывало другой тип звёзд.

Поиски коричневых карликов в 1980-е и 1990-е гг. привели к обнаружению нескольких кандидатов; однако ни один из них не был подтверждён как коричневый карлик. Для того чтобы отличить коричневые карлики от звёзд такой же температуры, нужно проверить наличие в их спектре линии лития (который звёзды разрушают, когда переходят к синтезу водорода). Или же можно поискать более тусклые объекты, с температурой ниже, чем у звёзд. В 1995 г. оба метода принесли свои плоды. Астрономы из Калифорнийского университета, Беркли, обнаружили присутствие лития в одном из объектов Плеяд, но этот результат был принят научной общественностью не сразу. Этот объект, тем не менее, впоследствии был подтверждён как первый найденный коричневый карлик.

Астрономы из Паломарской обсерватории и Университета Джона Хопкинса обнаружили компаньона звезды малой массы, обозначенного ими как Глизе 229B. Присутствие линий метана в его спектре показало, что его поверхностные температуры не превышают 1200 К. Крайне низкая светимость возможного коричневого карлика, а также возраст его звёздного компаньона указали на то, что масса объекта составляет около 50 масс Юпитера. Поэтому Глизе 229 B стал первым объектом, признанным большинством учёных как коричневый карлик.

Инфракрасные обзоры неба и другие техники в настоящее время позволили обнаружить сотни коричневых карликов. Некоторые из них являются компаньонами звёзд, другие входят в состав двойных систем из коричневых карликов; многие являются изолированными объектами. Предполагается, что они формируются почти так же, как и звёзды, и что число коричневых карликов во Вселенной может составлять от 1 до 10% от числа звёзд.
Планеты солнечной системы, затейливый арт
Магнетар – это тип нейтронной звезды, обладающей очень мощным магнитным полем, часто достигающим 10 гигатесла – в квадриллионы раз мощнее, чем магнитное поле, окружающее Землю, и в миллионы раз мощнее, чем поле любого искусственного магнита, когда-либо созданного человечеством. Даже на расстоянии в 1000 километров от магнетара сила магнитного поля этого объекта настолько велика, что оно способно разорвать на части человеческие ткани. При распаде магнитное поле испускает высокоэнергетическое рентгеновское и гамма-излучение.

Первые зарегистрированные лучи, предположительно, идущие от магнетаров, наблюдались в 1979 г. Основная теория функционирования магнетара была предложена в 1979 г. Робертом Дунканом и Кристофером Томпсоном, чтобы объяснить наблюдаемые явления.

Согласно этой теории, при взрыве сверхновой звезда, коллапсирущая в нейтронную звезду, которая и так обладает мощным магнитным полем, может дополнительно усилить его, превращая механическую энергию, полученную при сжатии, в электромагнитную энергию. Этот механизм получил название «динамо», отсылающее к хорошо известным электрическим генераторам.

Оценки указывают на то, что примерно одна из десяти сверхновых может стать магнетаром.

Рождение магнетара

Нормальные нейтронные звёзды образуются, когда массивная звезда израсходует запасы своего водородного топлива, и становится неспособной более поддерживать горение своего ядра. В результате целого ряда событий звезда взрывается ослепительной вспышкой сверхновой, после которой остаётся лишь нейтральное ядро.

Во время этого процесса магнитное поле звезды усиливается в соответствии с физическим принципом, известным как условие сохранения потока. По сути, сжатие звезды в более компактную форму заставляет силу магнитного поля возрастать, с тем, чтобы на больших расстояниях от звезды поле оставалось неизменным.

В случае магнетаров, однако, условия сжатия в некоторой степени отличаются. И уникальная комбинация вращательного движения, температуры и силы магнитного поля превращает часть тепла и вращательной энергии звёзд в дополнительную энергию поля.

Ближайшее к Земле звёздное сверхскопление Вестерланд 1, находящееся на расстоянии примерно в 16000 световых лет от нас, содержит некоторые из наиболее массивных звёзд главной последовательности во Вселенной. Радиусы некоторых из этих гигантов сравнимы с орбитой Сатурна, а некоторые сравнимы по светимости с миллионами Солнц.

В центре этого сверхскопления был обнаружен гигантский магнетар – в то время как обычно нейтронные звёзды (а следовательно, и магнетары) образуются из звёзд с начальными массами в 10-25 масс Солнца, начальная масса этого объекта составляла около 40 солнечных масс.

Пока учёным неясно точно, почему эта звезда не сжалась до чёрной дыры – выдвигалось предположение, что наличие компаньона у звезды могло объяснить некоторую потерю массы, но этот компаньон не был обнаружен. Возможно, звезда-компаньон была уничтожена при взаимодействии со звездой, ставшей впоследствии магнетаром. В любом из случаев, решение этого вопроса пока не представляется очевидным.

Сравнение размера Марса и Земли

,астрономия,песочница
Во Вселенной существует не малое количество объектов, заслуживающих к себе внимания своим необычным поведением. Дело в том, что в середине XX века с развитием лабораторной техники в космосе стали обнаруживаться объекты посылающие в пространство периодические импульсы в оптическом, радиоволновом и рентгеновском спектрах. Это были пульсары.

Пульсары были открыты в июне 1967 г. Джоселин Белл, аспирантом Э.Хьюиша. За этот выдающийся результат Хьюиш получил в 1974 году нобелевскую премию. Результаты наблюдений были засекречены на полгода. Это было связано с предположением искусственности строго периодических импульсов радиоизлучения. Пульсар, представляет собой нейтронную звезду. Она испускает узконаправленные потоки злучения. В результате вращения нейтронной звезды поток попадает в поле зрения внешнего наблюдателя через равные промежутки времени — так образуются импульсы пульсара.

Каким же образом пульсары излучают электромагнитные волны? При сжатии звезды увеличивается не только её плотность. При коллапсе огромной массивной звезды до размеров порядка нескольких десятков километров период вращения уменьшается до сотых и даже тысячных долей секунды, т. е. до характерных периодов переменности пульсаров. Помимо этого сильно уплотняется и магнитное поле звезды.

На поверхности нейтронной звезды, где давление не столь велико как в центре, нейтроны могут опять распадаться на протоны и электроны. Сильное магнитное поле разгоняет электроны до скоростей, близких к скорости света, и выбрасывает их в околозвёздное пространство. Заряженные частицы движутся только вдоль магнитных силовых линий, поэтому электроны покидают звезду именно от её магнитных полюсов, где силовые линии выходят наружу. Перемещаясь вдоль силовых линий, электроны испускают излучение в направлении своего движения. Это излучение представляет собой два узких пучка электромагнитных волн.

Во внешнем слое нейтронной звезды происходят и другие необычные явления. Там, где плотность вещества ещё недостаточно велика для разрушения ядер, они могут образовывать кристаллическую структуру. И звезда покрывается жёсткой коркой, подобной земной коре, но только в невообразимое число раз плотнее. При замедлении вращения пульсара в этой твердой корке создаются напряжения. После того, как они достигнут определенной величины, корка начинает раскалываться. Это явление называется звездотрясением по аналогии с земными тектоническими процессами. Возможно, такими звездотрясениями объясняются скачкообразные изменения периодов некоторых пульсаров.


Пульсары и квазары
Несколько похоже проявляют себя "новые" звезды - звёзды, светимость которых внезапно увеличивается в несколько тысяч раз. Все новые звёзды являются тесными двойными системами, состоящими из белого карлика и звезды-компаньона. В таких системах происходит перетекание вещества внешних слоев звезды-компаньона на белый карлик, перетекающее вещество образует вокруг белого карлика аккреционный диск, скорость аккреции на белый карлик постоянна и определяется параметрами звезды-компаньона и отношением масс звёзд - компонентов двойной системы. Газ, попадающий на белый карлик на 90% состоит из водорода. По мере накопления газа он начинает нагреваться и в какой-то момент в этом газе начинают идти термоядерные реакции. Из-за особенностей взаимодействия двух звезд скорость термоядерной реакции быстро увеличивается, а с ней растет и температура. В результате этого формируется ударная волны выбрасывающая остатки водорода в космос.

Вскоре после вспышки начинается новый цикл аккреции на белый карлик и накопления водородного слоя и, через некоторое время, определяемое темпами аккреции и свойствами белого карлика, вспышка повторяется. Интервал между вспышками составляет от десятков до тысяч лет.

Несмотря на все паразительность пульсаров и новых звезд, пожалуй, самими загадочными из подобных являются квазары. Квазары это класс внегалактических объектов, отличающихся очень высокой светимостью и настолько малым угловым размером, что в течение нескольких лет после открытия их не удавалось отличить от — звёзд.

Впервые квазары обнаружили в 1960 году как мощные радиоисточники. Очень сложно определить точное число обнаруженных на сегодняшний день квазаров. Это объясняется, с одной стороны, постоянным открытием новых квазаров, а с другой — некоторой размытостью границы между квазарами и некоторыми типами активных Галактик. В 2005 году группа астрономов использовала в своём исследовании данные о 195 000 квазаров.

Ближайший и наиболее яркий квазар находится на расстоянии около 2 млрд световых лет, а самые далёкие квазары, благодаря своей гигантской светимости, превосходящей в сотни раз светимость нормальных Галактик, видны на расстоянии более 10 млрд световых лет. Нерегулярная переменность блеска квазаров на временных масштабах менее суток указывает на то, что область генерации их излучения имеет малый размер, сравнимый с размером Солнечной системы.

Внятного ответа на вопрос, что же такое квазары пока нет. Разумеется, существует множество теорий, но на сегодняшний день нет ни одной состоятельной из них.
Как бы ненавязчиво намекнуть ей, что Плутон - не планета?
,татуировка,астрономия,Плутон
сфотографировал вчера луну через окуляр в свой телескоп Dob 10''. увеличение было минимальное: х55 крат. примерно так она и выглядит в телескоп, только более яркая, контрастная, рельефная и красивая


джой-любители астрономии, делитесь своими девайсами)
ещё выходили с другом на главную улицу города и показывали людям луну, выстраивались большие очереди и толпа вокруг телескопа:

"Большой синоптический обзорный телескоп" LSST с революционной 3200-мегапиксельной камерой должен быть построен к 2020 году на пике Эль-Пеньон горы Серо-Пачон высотой 2682 метра в северной части Чили. В отличие от аналогов, которые делают снимки галактик и туманностей, LSST будет обладать беспрецедентно широким углом обзора, а над его созданием работает международная команда ученых.
,астрономия,телескоп,3200 мегапикселей,охренеть,галилео (сообщество),#галилео,разное,наука

Астероид диаметром до 1 км приближается к Земле

,Астероид приближается к земле,пиздец,песочница,астрономия
Кадр из фильма «Армагеддон»
26 января астероид от 400 до 1000 метров в диаметре пройдет на очень близком расстоянии от земли. Как стало известно Gamebomb.ru, астероид 2004 BL86 приблизится к нашей планете на расстояние 1,2 миллионов километров, что в 3 раза больше, чем расстояние от Земли до Луны.
Ближе всего к Земле астероид будет находиться 26 января в 2 часа ночи по московскому времени. По словам ученых космическое тело представляет большой интерес для наблюдений, поскольку яркость во время максимального сближения с землей будет составлять до 9,1. Как бы то ни было, невооруженным глазом разглядеть астероид будет практически невозможно, поскольку блеск объекта будет ниже, чем у самых тусклых звезд, наблюдаемых невооруженным глазом.
,Астероид приближается к земле,пиздец,песочница,астрономия
,Астероид приближается к земле,пиздец,песочница,астрономия
15 февраля 2013 года астероид размером 45 метров в диаметре приблизился к Земле на расстояние всего в 27,7 тысяч километров, не угрожая человечеству. Это приблизительно в 13 раз меньше, чем расстояние от Земли до Луны. Как бы то ни было, новый астероид 2004 BL86 гораздо больше своего космического брата, поэтому эффект от его потенциального столкновения с Землей мог бы быть гораздо больше.
По данным Gamebomb.ru, любители астрономии смогут наблюдать астероид в конце месяца с помощью телескопов. Некоторые специалисты все же утверждают, что разглядеть космического странника можно будет и с помощью бинокля.

Спизженно с офф Game Bomb
Свежачок от обсерватории Чандра: столкновение галактик NGC 2207 и IC 2163, скомпилированное из оптического, инфракрасного и рентгеновского спектров.
Хайрез для обоин, разделённые спектры в каментах
Здесь мы собираем самые интересные картинки, арты, комиксы, мемасики по теме (+372 постов - )